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Introduction  

  

  

After a long day of strenuous school or work, we are all faced with the same age-old question: 

What’s for dinner?  The last meal of the day is usually the one we have the most time for, and 

most control over. With this time and control comes the need to make a decision.  Initially, it is 

as simple as cook or eat out?  We are assuming our decision maker chooses to eat out and have 

laid out our problem and model from there.  This decision to eat out now has new preferences 

that come into play. Is the decision maker inclined toward a type of cuisine?  Of course we all 

have days where are hankering for Chinese food, or the buttery taste of gourmet French 

cooking.  Our model assumes that a decision maker has an idea what type of food they want at 

the present moment, although we allow for the user to decide if this is the most important 

aspect of choosing their daily supper. Obviously, the decision maker has other factors that 

come into play for an enjoyable evening.  Is the decision maker partial to hipster Lawrenceville, 

ritzy Shadyside, bar-filled Southside, or ethnic Squirrel Hill?  Our model allows the decision 

maker to choose a neighborhood they would enjoy eating in.  For other decision makers, price 

is the most important factor.  Maybe they are a college student scrapping by and a cheap 

restaurant is exactly what they are looking for.  The person dining could be a successful 

business man trying to impress a billion-dollar client, and will pay top dollar to wine and dine.  

Maybe price is not as much as a factor as ratings.  Our model has ratings from 1-5 in increments 

of 0.5.  Although in the real world rating and price are often correlated, these were selected 

without regard to price.  After laying out our initial idea and the factors were chosen, we 

realized we had minimal uncertainties. Therefore, we weighted an “Additive Linear Utility” 

equation into our model.  Essentially, we made an algorithm that takes the decision makers 

preferences and recommends a restaurant that fits those.  

  

  

The Problem  

  

Everyone faces the problem of what to have for dinner.  This a daily issue for everyone.  Our 

group chose to define dinner as the last meal of the day. In general, most people have more 

time and more control over this meal.  People have control over who to eat with, how much to 

plan, if grocery shopping is necessary, how much cooking will be done, and other preferences.  

Our model centers on the choice to eat out while taking four user preferences into account. Our 

model weighs the decision makers’ preferences and takes the guesswork out of where to eat 

supper.  We have changed our initial proposal to reflect eating out rather than cooking because 

we found too many variables in ingredients, shopping, prepping and cooking.  We initially did 

not wish to steer the decision maker toward a particular restaurant and we have since 

completely changed our concept to do just that. Our algorithm aims to present the user with a 

restaurant that will make them most happy.   

  



The Decision Maker  

  

Although dinner is a daily decision faced by all adults, we had in mind that the decision maker 

has a baseline comfort with technology.  This is a desktop Java application, but could easily be 

ported to the web or on a mobile device.  We assume that they have an idea of their own 

preferences and what is truly important to them for choosing a restaurant.  Our model is built 

for Pittsburgh proper, and we assume a familiarity with the neighborhoods. We also allow for 

the user to rank which factor is most important.  We assume that the decision maker may have 

a preference for a single, certain type of food.  We also allow the user to change their minds 

and put in a different factors to re-rank the importance of their preferences. This will lead to a 

new set of restaurants generated.  We assume that our decision maker is open to new 

experiences, restaurants, and parts of town.  Indeed, this model will not work for decision 

makers that have their few favorite restaurants and don’t venture beyond the tried and true.  

The decision maker is one that has a certain amount of trust in technology and algorithms.  

  

Decision Options  

  

As mentioned earlier, the initial decision of whether to cook, get take out or go out to dinner is 

not represented here and happened prior to our model.  This was to keep the model simple as 

the bulk of the functionality is centered around generating a restaurant based on user 

preferences.  We acknowledge the ultimate decision in this problem comes later after the user 

works through all the drop down menus, inputs and ranks their preferences.  When faced with 

the sixty top choices that are generated, the person dining will pick one of those restaurants or 

opt for something else entirely. If they are not satisfied with the results, they can change the 

preferences in our app.  

  

Uncertainties  

Our model has no real quantitative uncertainties.  Thus, these are not present in our model.  

However, there is the probability that the user will not select a restaurant we present to them. 

The application aims to take in the user’s choices, and give the locations most relevant to their 

taste. In this way, we hope to give the person dining the most enjoyable experience possible. 

The better the algorithm works, the less of a chance of displeasure.   

  

User Preferences  

  

The meat of our decision is eliciting the user’s preferences to suggest a restaurant in Pittsburgh 

that the user would enjoy. It could be one they may never have considered prior to the use of 

our decision support system.  We use four factors to recommend a restaurant. Often people 

have an idea of what kind of food they want, so we choose eight types of cuisine.  These are as 

follows:  Chinese, Thai, Indian, Italian, American, French, Mexican, and Greek.  Some 

restaurants were excluded because they didn’t match the categories (Korean, Portuguese, 



Japanese). If they weren’t open past 7 pm, we didn’t include them. Our application considers 

this the minimum timeframe for an early dinner.  This 7pm stipulation had some unfortunate 

consequences, as many restaurants in Downtown and the Strip District were excluded for early 

closure.  If something was primarily a coffee shop or juice bar it was excluded from our 

database.  Some restaurants need more explanation.  For example, any pizza place was 

considered Italian.  If more than two types of cuisines were listed, such as Italian and American, 

the restaurant was classified based on the name or looking at the restaurant’s website to 

determine what the primary cuisine was.  Some restaurants were excluded if they said “Asian”, 

but didn’t specify if they were Chinese or Thai. One of the group members took time to 

evaluate the cuisines. If a restaurant fit into one of those labels, was listed in our database.  We 

also ran into this problem with restaurants listed as Mediterranean.  We looked at the 

restaurant’s website to determine if Greek was the primary cuisine.  The last restaurant type 

that needs explained is “American.”  Indeed, this became a catch-all term, and thus looks 

overrepresented in our database.  Steakhouses, bars, seafood, sub shops, sandwiches, and 

many fast food places fall under this umbrella.    

  

Another factor is neighborhood.  We added this feature, as people are often looking for places 

in a new part of town. They could also live in a certain area and don’t wish to travel far.  We 

selected neighborhoods for their plethora of restaurants and notoriety in the food world.  We 

used eight areas: Lawrenceville, Strip District, North Side, South Side, Downtown, Oakland, 

Shadyside and Squirrel Hill.  Some places got combined, like Bloomfield and Shadyside.   As 

these locations are within a couple miles of each other, we decided against using Google to find 

the closest distance. Instead we wanted to get at the preference of location by finding their 

chosen neighborhood.    

  

The third factor we used was price, represented by “$”. It ranged from one dollar sign for the 

cheapest place, to four dollar signs to represent the most expensive places.  We found that this 

is often a huge consideration when deciding what to eat.  We used Zomato (formerly Urban 

Spoon) to keep these as true as possible.    

  

The fourth and final factor is rating.  Many people turn to websites like Yelp to see what others 

are saying about a particular restaurant.  As some people trust not only high ratings but how 

many people rate something, we took this out and just gave a single rating for each restaurant 

with no commentary.  As price and rating seem to be dependent on each other, a group 

member arbitrarily put in the ratings and indeed tried not to be swayed by price.    

  

  

The Model  

  

We elicited the decision maker’s preferences for our four factors by using an application with 

drop down menus, one for each of the four factors.  For example, the decision maker could pick 

“Lawrenceville”, “Indian”, “$$$$” and a rating of “3”, or any other combination of those factors. 



Although, people do weigh these factors differently. Due to this, we asked the decision maker 

to pick the factor that is most and least important to them.  For example, the decision maker 

could be in the mood for Indian food so much that the rating doesn’t matter.  

  

  

From this Java application, we feed these preferences into a GeNIe model with jSMILE.  We built 

a model of this problem in GeNIe, shown below: 

 

Each of the four factors (cuisine, neighborhood, rating and price) have their own node, which 

make up the top of the GeNIe model.  These are chance nodes, and the evidence is set using 

tuples from the MySQL database. Each node is linked to one Utility Node with the same name. 

This is where the four factors that the decision maker chose get weighted.  Continuing with our 

example, “Lawrenceville”, “Indian” “$$$$” and “3” are each given a utility of 1. All other 

neighborhoods, cuisine, price points, and ratings are weighted as 0. Our GeNIe model reflects 

the factor that is most and least important, by linking all four utility nodes to Additive Linear 

Utility (ALU) node.  The most important factor to our decision maker is weighted as 0.75.  The 

least important factor to our decision maker is weighted in the final utility as 0.25.  This means 

there are two neutral preferences, which are not more or less important. These are weighted as 

0.5, midway between the higher and lower preference.  This weighting will ensure that the 

most important factor is heavily weighted.  Once all the evidence and definitions are set, the 

final node computes rankings for each and every restaurant in the database.   

  

Our data source was stored in a MySQL database of 559 restaurants. The database not only 

needed to include the parameters that the user would select, but also the information to be 

presented to the user in the final results. The column headers were: id, restaurant_name, 

address, phone_number, url, food_category, neighborhood, price_point, and rating.  The Java 

application queries the database, and stored “food_category”, “neighborhood”, “price_point”, 



and “rating” in variables. These variables were then used to set the evidence in the model’s 

chance nodes. When executed, our application returns the top sixty restaurants that, when the 

factors are weighted in the final utility, should generate the best eating experience.   

  

  

  

  

Analysis  

  

We wanted to keep the functionality and results of the application simple.  We kept the type of 

food to one primary category.  This works for a smaller database of just Pittsburgh restaurants, 

but would limit results on a global scale such as Yelp.  The same applies for multiple 

neighborhoods, price ranges, and ratings.   

  

 
Graphical User Interface of the Application  

Recommendations  

  

If we were to make this application more robust, we would include a way to select a broader 

spectrum of choices for each category.  It would also be useful to create a login page that allows 

the decision makers preferences to be stored. We might also allow for some uncertainties such 

as number of guests, if the establishment is child friendly, wait time, or if the restaurant takes 

reservations.  The ultimate uncertainty is whether or not the decision maker decides they are 



risky enough to try a new restaurant.  We would also like to port our application to a server in 

order to host it on the internet. This way anyone would be able to access the helpful 

functionality of the restaurant selector.   

  

Conclusion  

  

The restaurant industry is one of the largest in the world. Every evening millions of people leave 

their homes and descend upon eateries to fill their stomachs. There are countless restaurants in 

every city, and the selection process can be overwhelming. We wanted to create a smarter way 

to make sure you have a good dining experience. Using our application’s algorithm, the chances 

of enjoying a meal significant increase. We take in various parameters and user preference to 

tailor a set of results to each specific decision maker. The final list of ranked results is a group of 

dining locations tailored just for you!  

  

  

  

  

  


